Crystallite Size Dependence on Structural Parameters and Photocatalytic Activity of Microemulsion Mediated Synthesized Zno Nanoparticles Annealed at Different Temperatures

نویسندگان

  • D. O. Shah
  • J. Sharma
  • M. Vashishtha
چکیده

The synthesis of ZnO nanoparticles has attracted considerable interest because of their unique properties and potential applications in a variety of solid state devices, catalytic media etc. By using water-in-oil (w/o) microemulsions, nanodroplets of water were used as chemical reactor to synthesize nanoparticles of zinc oxide. Addition of reducing agent ((NH4)2CO3) and zinc salt (Zn(NO3)2) followed by heat treatment results in the formation of zinc oxide nanoparticles (NPs). The structural and optical properties of the samples were investigated by X-ray diffraction and UV-VIS-NIR absorption spectroscopy. X-ray diffraction revealed the wurtzite structure of ZnO. Percentage of lattice contraction and average particle size of the sample were also calculated from the XRD. Size-dependent blue shifts of absorption spectra revealed the quantum confinement effect. Furthermore, on increasing annealing temperature of ZnO NPs, crystallize size increases which, in turn,decreases the band gap energy and photocatalytic degradation efficiency of phenol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced photocatalytic activity of sonochemical derived ZnO via the co-doping process

In the present study, Co-ZnO and Co-Ni-ZnO nanoparticles were synthesized by sonochemical methods and the structural and optical properties were investigated through Fourier Transform Infrared spectroscopy (FTIR), UV-Vis spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), X-Ray Diffraction (XRD), and Photoluminescence spectroscopy (PL) methods. Morphology of nanoparticles obtain...

متن کامل

Enhanced photocatalytic activity of sonochemical derived ZnO via the co-doping process

In the present study, Co-ZnO and Co-Ni-ZnO nanoparticles were synthesized by sonochemical methods and the structural and optical properties were investigated through Fourier Transform Infrared spectroscopy (FTIR), UV-Vis spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), X-Ray Diffraction (XRD), and Photoluminescence spectroscopy (PL) methods. Morphology of nanoparticles obtain...

متن کامل

Incorporation of Pb2+, Fe2+ and Cd2+ ions in ZnO nanocatalyst for photocatalytic activity

In the present study, Pb-ZnO, Fe-ZnO, Cd-ZnO and Pb-Fe-Cd-ZnO nanoparticles were synthesized by the sonochemical method and those structural and optical properties were investigated by Fourier Transform Infrared spectroscopy (FTIR), UV-Vis spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Average crystallite size obtained was 60 nm. Moreover, the di...

متن کامل

Investigation of Structural, Optical and Photocatalytic Properties of Sr Doped Zno Nanoparticles

Pure ZnO and Sr doped ZnO nanoparticles are synthesized via Co-precipitation method using Zinc acetate dehydrate Zn (CH3COO)2. 2H2O, Strontium acetate Sr (CH3COO)2, as source materials. The influence of Sr dopants contents on the morphology, absorption, emission, and photocatalytic activity of ZnO synthesized nanoparticles was investigated systematically. The photocatalytic activity of pure and...

متن کامل

Properties of sol-gel synthesized multiphase TiO2 (AB)-ZnO (ZW) semiconductor nanostructure: An effective catalyst for methylene blue dye degradation

The present study, describes the structural, electrical, and the photocatalytic activity of sol-gel synthesized TiO2- ZnO nanostructure. The synthesized mixed oxide nanostructure is characterized by XRD, FTIR, Raman, UV-Vis, FESEM, DLS and Impedance Spectroscopy analyses. In addition, photocatalytic activity of multiphase TiO2 (TAB)-ZnO (ZW) nanostructure is analysed using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014